
Mathematical Models and Numerical Methods for
Big Data
Comprehensive Course Notes
Academic Year 2024/2025

Table of Contents
1. Introduction to Data Analysis Methods

Motivation and Basic Concepts
Mathematical Foundations
Overview of Applications

2. Data Analysis with the SVD
Singular Value Decomposition (SVD)
Optimal Low-Rank Matrix Approximation
Principal Component Analysis (PCA)
Latent Semantic Analysis
Movie Recommendation with Latent Factor Models
SVD and Least-Squares Problems

3. Multiway Data Analysis
Higher-Order SVD of Tensors
Canonical Polyadic Decomposition

4. Spectral Graph Theory
How to Calculate Eigenvalues/Eigenvectors and the SVD Numerically
Graphs and the Graph Laplacian
Graph Fourier Transform
Dimensionality Reduction with Laplacian Eigenmaps

5. Ranking with Eigenvectors
Vector Iteration
Perron-Frobenius Theorem
PageRank

6. Numerical Methods for Large Scale Linear Systems
Krylov Methods for Eigenvalue Problems
Krylov Methods for Large Systems of Equations
Krylov Methods for Matrix Functions

7. Clustering Algorithms
K-center Clustering



Introduction to Data Analysis Methods
Motivation and Basic Concepts
This course explores advanced mathematical and computational methods for analyzing
large-scale data. We focus on matrix and tensor decompositions, graph-based methods,
dimension reduction techniques, and numerical algorithms for large-scale problems that form
the foundation of modern data science applications.

The key challenges in big data analysis include:

Big data typically has characteristics often referred to as the "4 Vs":

Mathematical Foundations
Throughout this course, we rely on concepts from linear algebra, numerical analysis, graph
theory, and optimization. Essential mathematical tools include:

The K-means Algorithm
Spectral Clustering

8. Mathematical Background
Linear Algebra Review
Numerical Analysis Basics

Efficient handling of high-dimensional data
Extracting meaningful patterns from massive datasets
Developing scalable algorithms for large-scale problems
Dimensionality reduction while preserving essential information
Finding appropriate mathematical representations for complex data

Volume: Extremely large amounts of data
Velocity: Data that is generated or must be processed quickly
Variety: Heterogeneous data from multiple sources
Veracity: Uncertainty or inconsistency in data

Vector spaces and linear transformations: The foundational concept for representing
data and transformations
Matrix decompositions (particularly SVD): For uncovering latent structure in data
matrices
Graph theory and spectral methods: For analyzing relational data and networks
Numerical algorithms for large-scale eigenproblems: Essential for processing big
data efficiently



Overview of Applications
The methods covered in this course are applied in various domains:

Data Analysis with the SVD
Singular Value Decomposition (SVD)
The Singular Value Decomposition (SVD) is a fundamental matrix factorization technique
that provides insights into the structure of a matrix and forms the basis for many data
analysis methods.

Definition and Properties

Definition (Singular Value Decomposition): For any matrix A ∈ R
m×n with m ≥ n, there

exists a decomposition

A = UΣV T

where:

For computational efficiency, we often use the "thin" or "economy" SVD:

A = UnΣnV
T

Tensor representations and decompositions: For analyzing multi-way data
Optimization techniques: For fitting models to data

Recommender systems and collaborative filtering: Suggesting products, movies, or
content to users based on their preferences and behavior
Web search and page ranking: Determining the importance of web pages in search
results
Image and signal processing: Denoising, compression, and feature extraction
Network analysis and community detection: Finding structures in social, biological, or
information networks
Dimensionality reduction and data visualization: Converting high-dimensional data to
lower dimensions for analysis and visualization
Clustering and classification: Grouping similar data points or assigning data to
predefined categories

U ∈ Rm×m is an orthogonal matrix whose columns are the left singular vectors of A
Σ ∈ R

m×n is a diagonal matrix containing the singular values σ1 ≥ σ2 ≥ ⋯ ≥ σn ≥ 0

V ∈ R
n×n is an orthogonal matrix whose columns are the right singular vectors of A



where Un ∈ R
m×n contains only the first n columns of U  and Σn ∈ R

n×n is a square diagonal
matrix.

The SVD provides important relationships:

Avi = σiui

ATui = σivi

Theorem: The columns of U  form an orthonormal basis for the column space of A, while the
columns of V  form an orthonormal basis for the row space of A.

Proposition: The SVD provides direct connections to the fundamental subspaces of A:

where r = rank(A) is the number of non-zero singular values.

Theorem (Matrix Norms via SVD): For matrix A with SVD A = UΣV T :

|A|2 = σ1

|A|F =
n

∑
i=1

σ2
i

Computational Considerations:
Computing the full SVD requires O(mn2) operations when m ≥ n, which can be prohibitive
for large matrices. Randomized algorithms and iterative methods can be used to compute
approximate SVDs more efficiently.

Example: Consider the matrix A = [ ]. We can compute its SVD as follows:

First, we compute ATA = [ ]. The eigenvalues are λ1 = 40 and λ2 = 10, so
the singular values are σ1 = √40 = 2√10 and σ2 = √10.

The right singular vectors are the eigenvectors of ATA, which are v1 = 1
√2

[1, −1]T  and
v2 = 1

√2
[1, 1]T .

The left singular vectors are computed from ui = 1
σi
Avi, giving u1 = 1

√10
[2√2, √2]T  and

u2 = 1
√10

[0, −√10]T .

Therefore, the SVD of A is:

A = UΣV T = [ ] [ ] [ ]

Left singular vectors u1, … ,ur form a basis for the range of A: R(A)

Right singular vectors v1, … , vr form a basis for the range of AT : R(AT )

Right singular vectors vr+1, … , vn form a basis for the null space of A: N (A)

Left singular vectors ur+1, … ,um form a basis for the null space of AT : N (AT )

⎷4 0 3 −5

25 −15  − 15 25

2√2
√10

0  √2
√10

−1 2√10 0 0 √10
1

√2

1
√2

  − 1
√2

1
√2



Optimal Low-Rank Matrix Approximation
One of the most important applications of the SVD is finding optimal low-rank
approximations to matrices.

Theorem (Eckart-Young-Mirsky): Let A ∈ R
m×n have rank r > k ≥ 1. The rank-k matrix Ak

that minimizes |A − Ak|F  is given by

Ak =
k

∑
i=1

σiuiv
T
i = UkΣkV

T
k

where Uk = [u1, … ,uk], Vk = [v1, … , vk], and Σk = diag(σ1, … ,σk).

The approximation error is

|A − Ak|F =
r

∑
i=k+1

σ2
i

This optimality also holds for the spectral norm:

|A − Ak|2 = σk+1

Proof Sketch: For any rank-k matrix B, the dimension of its null space N (B) is at least
n − k. Therefore, there exists a unit vector w ∈ N (B) ∩ spanv1, … , vk+1. For such a vector:

|A − B|2 ≥ |(A − B)w|2 = |Aw|2 ≥ σk+1

For Ak, we have |A − Ak|2 = σk+1, showing that Ak achieves the minimum possible error.

Remark: The truncated SVD provides the optimal rank-k approximation in terms of both the
Frobenius norm and the 2-norm. This is a powerful result with applications in dimensionality
reduction, denoising, and data compression.

Implementation (Python):

⎷import numpy as np

from scipy.linalg import svd

def low_rank_approximation(A, k):

# Compute the SVD

U, s, Vt = svd(A, full_matrices=False)

# Truncate to rank k

U_k = U[:, :k]

s_k = s[:k]

Vt_k = Vt[:k, :]

# Reconstruct the rank-k approximation

A_k = U_k @ np.diag(s_k) @ Vt_k



Example: Consider the matrix A = [ ]. Its singular values
are approximately σ1 ≈ 14.07, σ2 ≈ 1.30, and σ3 ≈ 0.10. If we create a rank-2 approximation,
the error in the Frobenius norm will be |A − A2|F = σ3 ≈ 0.10, which is quite small compared
to the largest singular value. This indicates that the data in A is well-approximated by a rank-
2 structure.

Principal Component Analysis (PCA)
Principal Component Analysis is a statistical method for dimensionality reduction that uses
the SVD as its computational foundation.

Mathematical Formulation
Consider a data matrix X ∈ Rm×n where rows represent m observations and columns
represent n features. We typically center the data by subtracting the mean of each column to
obtain the centered data matrix A.

Definition (PCA): The principal components of the centered data matrix A are the
eigenvectors of the covariance matrix C = 1

m−1
ATA.

The SVD provides a direct way to compute the principal components:

Theorem: If A = UΣV T  is the SVD of the centered data matrix, then:

Example (PCA in Action): In a dataset of face images, each row of A might represent a
single image (flattened to a vector), and each column represents a pixel position. PCA can
extract "eigenfaces" (principal components) that capture the main directions of variation in
the image set. The first eigenface might capture variations in lighting, the second might
capture facial expressions, etc.

Variance Explained and Component Selection

A key aspect of PCA is selecting the number of components to retain. This is typically done
by examining the proportion of variance explained:

# Compute the error

error_f = np.sqrt(np.sum(s[k:]**2))

error_2 = s[k]

return A_k, error_f, error_2

1 1 1 1 1 2 3 4 1 3 6 10

The columns of V  are the principal components (eigenvectors of C)

The eigenvalues of C are λi =
σ2
i

m−1

The projections of the data onto the principal components are given by AV = UΣ (these
are called the principal component scores)



Proportion of variance explained by first k components =
∑k

i=1 λi

∑n
i=1 λi

=
∑k

i=1 σ
2
i

∑n
i=1 σ

2
i

Common approaches for selecting k include:

Computational Complexity: For a data matrix of size m × n:

For high-dimensional data where n ≫ m (e.g., gene expression data), it's more efficient to
compute the SVD of A rather than the eigendecomposition of ATA.

Implementation (Python):

Setting a threshold for cumulative explained variance (e.g., 90%)
Examining the scree plot for an "elbow" point (where the explained variance drops off
sharply)
Using cross-validation to determine optimal k for a specific task

Computing the covariance matrix: O(mn2)

Computing the eigendecomposition of the covariance matrix: O(n3)

Computing the SVD directly on the data matrix: O(mn2) when m ≥ n

import numpy as np

from sklearn.decomposition import PCA

import matplotlib.pyplot as plt

# Create a simple dataset

np.random.seed(42)

n_samples = 100

n_features = 2

X = np.dot(np.random.randn(n_samples, 1), np.random.randn(1, n_features))

X += np.random.randn(n_samples, n_features) * 0.3

# Apply PCA

pca = PCA()

X_pca = pca.fit_transform(X)

# Plot the data and principal components

plt.figure(figsize=(8, 6))

plt.scatter(X[:, 0], X[:, 1], alpha=0.5)

for i, (component, variance) in enumerate(zip(pca.components_,

pca.explained_variance_)):

plt.arrow(pca.mean_[0], pca.mean_[1],

component[0] * variance, component[1] * variance,

head_width=0.1, head_length=0.1, color=f'C{i+2}')

plt.axis('equal')

plt.title(f'PCA: Explained variance ratio = 

{pca.explained_variance_ratio_}')

plt.xlabel('Feature 1')



PCA vs SVD

While PCA and SVD are mathematically related, they have different interpretations:

In practice, when computing PCA:

Latent Semantic Analysis
Latent Semantic Analysis (LSA) is an application of SVD to natural language processing for
discovering hidden relationships between terms and documents.

Term-Document Matrix

In LSA, we construct a term-document matrix A ∈ R
m×n where:

LSA via SVD

LSA applies the truncated SVD to the term-document matrix:

A ≈ Ak = UkΣkV
T
k

where k ≪ min(m,n).

plt.ylabel('Feature 2')

plt.grid(True)

PCA is a statistical technique that finds directions of maximum variance in the data
SVD is a matrix factorization method that decomposes a matrix into orthogonal factors

1. Center the data matrix X to get A
2. Either:

Compute the eigendecomposition of 1
m−1 A

TA

Compute the SVD of A and use the right singular vectors as principal components

Each row represents a term in the vocabulary
Each column represents a document
Entry Aij represents the frequency of term i in document j, often weighted by term
frequency-inverse document frequency (TF-IDF):

Aij = TFij × IDFi

where:

TFij =
Count of term i in document j

Total terms in document j

IDFi = log
Total number of documents

Number of documents containing term i



The resulting decomposition reveals:

Example: After performing LSA, document similarity can be measured by the cosine
distance between document vectors in the latent space:

similarity(di, dj) =
(VkΣk)i ⋅ (VkΣk)j
|(VkΣk)i||(VkΣk)j|

This allows for semantic search, where documents can be retrieved based on conceptual
content rather than exact keyword matching.

Concrete Example: Consider a small corpus with three documents:

The term-document matrix (after stemming and removing stop words) might look like:

After applying the SVD and reducing to 2 dimensions, terms and documents are mapped to
the same latent semantic space, revealing that "cat" and "dog" are semantically related (both
are pets), and that Doc1 and Doc2 are more similar than either is to Doc3.

Implementation Considerations:

Movie Recommendation with Latent Factor Models
Recommender systems use latent factor models to predict user preferences for items based
on observed ratings.

Uk: term vectors in the latent semantic space
Vk: document vectors in the latent semantic space
Σk: importance of each latent semantic dimension

1. "The cat sat on the mat."
2. "The dog ran across the yard."
3. "The cat chased the dog across the yard."

Doc1  Doc2  Doc3

cat     1     0     1

mat     1     0     0

dog     0     1     1

ran     0     1     0

yard    0     1     1

chase   0     0     1

For large vocabularies and document collections, the term-document matrix is extremely
sparse
Specialized algorithms for sparse SVD computation should be used
Dimensionality reduction typically retains 100-300 dimensions, depending on corpus size



Matrix Completion Problem

Given a partially observed rating matrix R ∈ R
m×n where Rij represents the rating of user i

for item j (when known), the goal is to predict the missing entries.

Latent Factor Model
We approximate the rating matrix as a product of lower-dimensional matrices:

R ≈ PQT

where:

Intuitively, each user and each item is represented by a k-dimensional vector of latent
factors. The predicted rating is the inner product of these vectors.

Computing the Latent Factors
When R is fully observed, we can use the truncated SVD:

R ≈ UkΣkV
T
k = (UkΣ1/2

k )(Σ1/2
k V T

k ) = PQT

When R is partially observed, we use methods like Funk SVD, which minimizes:

min
P ,Q

∑
(i,j)∈Ω

(Rij − pTi qj)
2 + λ(|P |2

F + |Q|2
F )

where Ω is the set of observed entries and λ is a regularization parameter.

This is typically solved using stochastic gradient descent (SGD):

where α is the learning rate.

Advanced Models:

P ∈ R
m×k represents user factors

Q ∈ R
n×k represents item factors

k ≪ min(m,n) is the number of latent factors

For each observed rating R_ij:

Compute error: e_ij = R_ij - p_i^T q_j

Update p_i: p_i = p_i + α(e_ij q_j - λp_i)

Update q_j: q_j = q_j + α(e_ij p_i - λq_j)

Biased Matrix Factorization: Adds user and item biases

Rij ≈ μ + bi + bj + pTi qj

Temporal Dynamics: Incorporates time-varying factors



Implementation (Python):

Evaluation Metrics:

Factorization Machines: Generalizes matrix factorization to include additional features

import numpy as np

def funk_svd(R, k=10, alpha=0.01, lambda_reg=0.1, iterations=50):

"""

Implement Funk SVD (Regularized Matrix Factorization)

Parameters:

R: Rating matrix with missing values as NaN

k: Number of latent factors

alpha: Learning rate

lambda_reg: Regularization parameter

iterations: Number of SGD iterations

Returns:

P, Q: Factor matrices

"""

m, n = R.shape

P = np.random.normal(0, 0.1, (m, k))

Q = np.random.normal(0, 0.1, (n, k))

# Indices of observed ratings

observed = np.where(~np.isnan(R))

for _ in range(iterations):

# Shuffle the observed ratings

indices = np.arange(len(observed[0]))

np.random.shuffle(indices)

# SGD update

for idx in indices:

i, j = observed[0][idx], observed[1][idx]

error = R[i, j] - np.dot(P[i], Q[j])

# Update latent factors

P[i] += alpha * (error * Q[j] - lambda_reg * P[i])

Q[j] += alpha * (error * P[i] - lambda_reg * Q[j])

return P, Q

RMSE (Root Mean Squared Error): √ 1
|test set|

∑(i,j)∈test set(Rij − R̂ij)2

MAE (Mean Absolute Error): 1
|test set| ∑(i,j)∈test set |Rij − R̂ij|



Practical Considerations:

SVD and Least-Squares Problems
The SVD provides a robust method for solving least-squares problems, particularly when the
system is ill-conditioned.

Least-Squares via SVD
For the overdetermined system Ax ≈ b where A ∈ R

m×n with m > n, the least-squares
solution minimizes |Ax − b|2.

Using the SVD A = UΣV T , the solution is:

x = VΣ†U T b

where Σ† is the pseudoinverse of Σ, obtained by taking the reciprocal of each non-zero
singular value and leaving zeros unchanged.

Theorem (Moore-Penrose Pseudoinverse): The Moore-Penrose pseudoinverse of A is:

A† = VΣ†U T

For a full-rank matrix with m > n, this simplifies to:

A† = (ATA)−1AT

Derivation: Starting with Ax ≈ b, we want to minimize |Ax − b|2. Using the SVD:

|Ax − b|2 = |UΣV Tx − b|2 = |ΣV Tx − U T b|2

Let z = V Tx and c = U T b. Then we want to minimize |Σz − c|2. This has the component-wise
solution:

zi = {

Setting zi = 0 when σi = 0 gives the minimum-norm solution:

z = Σ†c

Therefore, x = V z = VΣ†U T b = A†b.

Numerical Example: Consider the overdetermined system:

[ ]x = [ ]

Precision@k: Proportion of recommended items in the top-k that are relevant
Recall@k: Proportion of relevant items found in the top-k recommendations

Cold start problem: How to handle new users or items with no ratings
Scalability: For large systems with millions of users and items
Interpretability: Understanding why certain recommendations are made

ci/σi if σi > 0 arbitrary if σi = 0

1 1 2 0 0 3 2 1 3



Using the SVD to compute the pseudoinverse:

The solution is approximately x = [0.3, 1.0]T , which minimizes |Ax − b|2.

Regularized Least-Squares

When A is ill-conditioned (i.e., some singular values are very small but nonzero), the solution
can be highly sensitive to perturbations in b. Regularization can improve stability.

Tikhonov Regularization: Instead of minimizing |Ax − b|2
2, we minimize |Ax − b|2

2 + λ|x|2
2 for

some λ > 0.

The solution is:

xλ = (ATA + λI)−1AT b

Using the SVD, this becomes:

xλ =
r

∑
i=1

σi

σ2
i + λ

(uT
i b)vi

Filter Factors: The regularization can be seen as applying filter factors to the SVD
components:

xλ =
r

∑
i=1

fi
uT
i b

σi

vi

where fi =
σ2
i

σ2
i +λ

 are filter factors that reduce the contribution of small singular values.

L-Curve Method for Choosing λ: The L-curve plots the norm of the solution |xλ|2 against
the residual norm |Axλ − b|2 for different values of λ. The optimal λ is often found at the
"corner" of this curve.

Implementation (Python):

1. Find the SVD: A = UΣV T

2. Compute Σ†

3. Calculate x = VΣ†U T b

import numpy as np

from scipy.linalg import svd

def tikhonov_regularization(A, b, lambda_reg):

# Compute the SVD

U, s, Vt = svd(A, full_matrices=False)

# Compute filter factors

filter_factors = s**2 / (s**2 + lambda_reg)



Multiway Data Analysis
Higher-Order SVD of Tensors
Tensors are multi-dimensional arrays that generalize the concept of matrices. For complex
data with multiple modes, tensor decompositions offer more flexibility than matrix methods.

Tensor Basics

Definition (Tensor): A k-way or k-mode tensor A ∈ R
m1×m2×⋯×mk  is a multidimensional

array with elements Ai1,i2,…,ik  for indices ij ∈ 1, … ,mj and j ∈ 1, … , k.

Definition (Tensor Operations): For a 3-way tensor A ∈ R
m1×m2×m3 :

Inner Product and Norm: The inner product of two tensors A,B ∈ R
m1×m2×⋯×mk  is:

⟨A,B⟩ =
m1

∑
i1=1

m2

∑
i2=1

⋯
mk

∑
ik=1

Ai1,i2,…,ikBi1,i2,…,ik

The Frobenius norm is:

|A|F = √⟨A,A⟩ =
m1

∑
i1=1

m2

∑
i2=1

⋯
mk

∑
ik=1

A2
i1,i2,…,ik

Rank-One Tensor: A tensor A is rank-one if it can be written as an outer product of vectors:

A = a(1) ∘ a(2) ∘ ⋯ ∘ a(k)

# Compute regularized solution

UTb = U.T @ b

x_lambda = Vt.T @ (filter_factors * (UTb / s))

# Compute residual norm and solution norm

residual_norm = np.linalg.norm(A @ x_lambda - b)

solution_norm = np.linalg.norm(x_lambda)

return x_lambda, residual_norm, solution_norm

Fibers: One-dimensional slices, e.g., A:,i2,i3 , Ai1,:,i3 , Ai1,i2,:

Slices: Two-dimensional slices, e.g., Ai1,:,:, A:,i2,:, A:,:,i3

Mode-n product: B = A ×n U  means Bi1,…,j,…,ik = ∑in
Ai1,…,in,…,ikUj,in

Mode-n unfolding: Reshapes the tensor into a matrix by arranging the mode-n fibers as
columns

⎷



where ∘ denotes the outer product and a(n) ∈ R
mn .

Higher-Order SVD (HOSVD)

Theorem (HOSVD): A 3-way tensor A ∈ R
m1×m2×m3  can be decomposed as:

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3)

where:

The HOSVD is computed by:

Algorithm (HOSVD Computation):

Computational Complexity:

Low-Rank Tensor Approximation

Similar to matrices, we can truncate the HOSVD to obtain a low-rank approximation:

A ≈ Sr ×1 U
(1)
r ×2 U

(2)
r ×3 U

(3)
r

where r = (r1, r2, r3) specifies the multilinear rank, and U (n)
r  contains the first rn columns of

U (n).

U (1) ∈ Rm1×m1 , U (2) ∈ Rm2×m2 , and U (3) ∈ Rm3×m3  are orthogonal matrices
S ∈ R

m1×m2×m3  is the core tensor

1. For each mode n, unfold the tensor to obtain matrix A(n)

2. Compute the SVD of each unfolding: A(n) = U (n)Σ(n)(V (n))T

3. Compute the core tensor: S = A ×1 (U (1))T ×2 (U (2))T ×3 (U (3))T

Input: Tensor A ∈ ℝ^(m₁×m₂×m₃)
Output: Factors U^(1), U^(2), U^(3) and core tensor S

For n = 1 to 3:

A_(n) = unfold A along mode n

Compute SVD: A_(n) = U^(n)Σ^(n)(V^(n))^T

End For

S = A ×₁ (U^(1))^T ×₂ (U^(2))^T ×₃ (U^(3))^T

Computing the unfoldings: O(m₁m₂m₃)
Computing the SVDs: O(m₁²m₂m₃ + m₂²m₁m₃ + m₃²m₁m₂)
Computing the core tensor: O(m₁²m₂m₃ + m₁m₂²m₃ + m₁m₂m₃²)



Theorem: The rank-(r1, r2, r3) approximation from truncated HOSVD satisfies:

|A −Ar|F ≤ √3|A −Aopt|F

where Aopt is the optimal rank-r approximation.

Proof Sketch: The error can be bounded by considering one mode at a time and applying
the Eckart-Young theorem to each unfolding.

Implementation (Python):

import numpy as np

from scipy.linalg import svd

def hosvd(tensor, ranks=None):

"""

Compute the Higher-Order SVD of a 3-way tensor

Parameters:

tensor: 3D numpy array

ranks: tuple (r1, r2, r3) for truncation, defaults to full rank

Returns:

U_list: List of factor matrices [U1, U2, U3]

S: Core tensor

"""

dims = tensor.shape

if ranks is None:

ranks = dims

# Compute factor matrices via SVD of unfoldings

U_list = []

for mode in range(3):

# Unfold tensor along current mode

unfolded = unfold_tensor(tensor, mode)

# Compute SVD

U, _, _ = svd(unfolded, full_matrices=False)

# Truncate if necessary

U_truncated = U[:, :ranks[mode]]

U_list.append(U_truncated)

# Compute core tensor

S = tensor.copy()

for mode in range(3):

S = mode_n_product(S, U_list[mode].T, mode)



Applications

Example (Hyperspectral Imaging): In hyperspectral imaging, data can be represented as a
3D tensor where dimensions correspond to spatial coordinates (x, y) and wavelength. The
HOSVD can decompose this data into spatial patterns and spectral signatures, enabling
efficient compression and feature extraction.

Example (Social Network Analysis): For temporal social networks, a 3D tensor can
represent interactions where dimensions correspond to sender, receiver, and time. The
HOSVD can identify temporal patterns and community structures.

Example (EEG Analysis): Electroencephalogram (EEG) data can be represented as a 3D
tensor (channels × time × trials). The HOSVD can extract spatial, temporal, and trial-
dependent patterns.

Canonical Polyadic Decomposition
The Canonical Polyadic (CP) decomposition, also known as CANDECOMP/PARAFAC,
expresses a tensor as a sum of rank-one tensors.

Definition (CP Decomposition): The rank-R CP decomposition of a 3-way tensor
A ∈ Rm1×m2×m3  is:

A ≈
R

∑
r=1

a
(1)
r ∘ a

(2)
r ∘ a

(3)
r

where ∘ denotes the outer product, and a(n)
r ∈ R

mn  are the factor vectors.

In matrix form, the factor matrices are:

A(n) = [a
(n)
1 , a

(n)
2 , … , a

(n)
R ] ∈ R

mn×R

Tensor Rank: The tensor rank is the minimum number R such that the CP decomposition
holds exactly. Unlike matrices, determining the rank of a tensor is NP-hard.

Computing the CP Decomposition

return U_list, S

def unfold_tensor(tensor, mode):

# Implementation of tensor unfolding

# ...

def mode_n_product(tensor, matrix, mode):

# Implementation of mode-n product

# ...



The CP decomposition is typically computed using an alternating least squares (ALS)
algorithm:

Algorithm (CP-ALS):

where ⊙ denotes the Khatri-Rao product (columnwise Kronecker product).

Implementation (Python):

Input: Tensor A, target rank R

Output: Factor matrices A^(1), A^(2), A^(3)

Initialize A^(1), A^(2), A^(3) randomly

Repeat until convergence:

For n = 1 to 3:

V = (A^(n-1) ⊙ A^(n-2))^T(A^(n-1) ⊙ A^(n-2))
A_(n) = unfolding of A along mode n

A^(n) = A_(n)((A^(n-1) ⊙ A^(n-2))V^†)
Normalize columns of A^(n) if desired

End For

End Repeat

import numpy as np

def cp_als(tensor, rank, max_iter=100, tol=1e-6):

"""

CP decomposition using alternating least squares

Parameters:

tensor: 3D numpy array

rank: Target rank of the decomposition

max_iter: Maximum number of iterations

tol: Convergence tolerance

Returns:

factors: List of factor matrices [A1, A2, A3]

"""

dims = tensor.shape

# Initialize factor matrices

factors = [np.random.random((dim, rank)) for dim in dims]

# Normalize columns

for r in range(rank):

for n in range(3):

norm = np.linalg.norm(factors[n][:, r])

factors[n][:, r] /= norm



Properties and Challenges

Uniqueness: Unlike the matrix SVD, the CP decomposition is often unique (up to scaling
and permutation of the components) under mild conditions, which is a significant advantage
for interpretability.

prev_error = float('inf')

for iteration in range(max_iter):

for mode in range(3):

# Compute Khatri-Rao product of all matrices except current mode

kr_product = khatri_rao_product([factors[n] for n in range(3) if

n != mode])

# Unfold tensor along current mode

unfolded = unfold_tensor(tensor, mode)

# Update factor matrix

factors[mode] = unfolded @ kr_product @

np.linalg.pinv(kr_product.T @ kr_product)

# Normalize columns

for r in range(rank):

norm = np.linalg.norm(factors[mode][:, r])

if norm > 0:

factors[mode][:, r] /= norm

# Check convergence

reconstructed = reconstruct_from_cp(factors)

error = np.linalg.norm(tensor - reconstructed) /

np.linalg.norm(tensor)

if abs(prev_error - error) < tol:

break

prev_error = error

return factors

def khatri_rao_product(matrices):

# Implementation of Khatri-Rao product

# ...

def reconstruct_from_cp(factors):

# Reconstruction of tensor from CP factors

# ...



Example (Chemometrics): In chemometrics, fluorescence spectroscopy data forms a 3D
tensor (excitation wavelengths × emission wavelengths × samples). The CP decomposition
can separate contributions from different chemical compounds, where each rank-one
component corresponds to a distinct chemical.

Challenges:

Degeneracy: For some tensors, attempting to find the best rank-R approximation can lead
to a degenerate case where components have extremely large norms that cancel each
other. This phenomenon has no matrix analog.

Comparison with HOSVD:

Spectral Graph Theory
How to Calculate Eigenvalues/Eigenvectors and the
SVD Numerically
For large-scale problems, direct methods for computing eigenvalues and singular values
become impractical. Instead, we use iterative methods that are more efficient for large
matrices.

Schur Decomposition

Theorem (Schur Decomposition): For any square matrix A ∈ C
n×n, there exists a unitary

matrix U ∈ C
n×n such that:

A = UTU ∗

where T ∈ C
n×n is upper triangular with the eigenvalues of A on the diagonal.

The Schur decomposition is the foundation for numerical eigenvalue algorithms, as it can be
computed in a stable manner.

QR Algorithm

The CP decomposition may not always exist for a given rank R
The ALS algorithm can converge slowly or to local minima
The optimal rank is often unknown and difficult to determine

CP: Decomposes tensor into sum of rank-one tensors; often unique but can be harder to
compute
HOSVD: Generalizes matrix SVD; always exists but typically not optimal for fixed
multilinear rank



The QR algorithm is a fundamental method for computing the Schur decomposition:

Algorithm (Basic QR Algorithm):

With successive iterations, Ak converges to an upper triangular matrix with eigenvalues on
the diagonal.

Practical QR Algorithm: In practice, the QR algorithm incorporates:

Computational Complexity:

Power Method and Inverse Iteration
Algorithm (Power Method):

Input: Matrix A

Output: Schur form T with eigenvalues on diagonal

A₀ = A

For k = 1, 2, ...

Compute QR factorization: Aₖ₋₁ = QₖRₖ
Form Aₖ = RₖQₖ

End For

1. Initial reduction to Hessenberg form: A = QHQ∗ where H is upper Hessenberg
(zeros below the first subdiagonal)

2. Shifts: To accelerate convergence, work with Ak − μkI where μk is a carefully chosen
shift

3. Deflation: Once an eigenvalue has converged, the problem is reduced in size
4. Implicit QR steps: Avoid explicit computation of Q and R

Reduction to Hessenberg form: O(n3)

Each QR iteration: O(n2)

Total complexity: O(n3)

Input: Matrix A, initial vector x₀

Output: Dominant eigenvector and eigenvalue

For k = 1, 2, ...

yₖ = Axₖ₋₁
xₖ = yₖ/‖yₖ‖
λₖ = xₖᵀAxₖ

End For



The power method converges to the eigenvector corresponding to the largest (in magnitude)
eigenvalue, with convergence rate |λ2/λ1| where λ1,λ2 are the largest and second-largest
eigenvalues in magnitude.

Algorithm (Inverse Iteration with Shift):

Inverse iteration converges to the eigenvector corresponding to the eigenvalue closest to μ,
with convergence rate |μ − λi|/|μ − λj| where λi is the closest eigenvalue to μ and λj is the
second closest.

Practical Considerations:

Arnoldi and Lanczos Algorithms

For large, sparse matrices, Krylov subspace methods like Arnoldi and Lanczos are more
efficient.

Algorithm (Arnoldi Iteration):

Input: Matrix A, initial vector x₀, shift μ

Output: Eigenvector corresponding to eigenvalue closest to μ

For k = 1, 2, ...

Solve (A - μI)yₖ = xₖ₋₁
xₖ = yₖ/‖yₖ‖
λₖ = xₖᵀAxₖ

End For

The power method is simple but converges slowly if |λ1| ≈ |λ2|

Inverse iteration is more flexible but requires solving linear systems
For clustered eigenvalues, more sophisticated methods like subspace iteration or the
Arnoldi/Lanczos methods are needed

Input: Matrix A, initial vector q₁ with ‖q₁‖ = 1
Output: Orthonormal basis {q₁, ..., qₘ} for Krylov subspace and upper
Hessenberg matrix Hₘ

For j = 1, 2, ..., m

v = Aqⱼ
For i = 1, 2, ..., j

hᵢⱼ = qᵢᵀv
v = v - hᵢⱼqᵢ

End For

hⱼ₊₁,ⱼ = ‖v‖



Arnoldi iteration computes an orthonormal basis for the Krylov subspace
Km(A, q1) = spanq1,Aq1,A2q1, … ,Am−1q1, and reduces A to upper Hessenberg form Hm,
whose eigenvalues approximate some eigenvalues of A.

Lanczos Algorithm (for Symmetric Matrices): For symmetric matrices, Arnoldi simplifies
to the Lanczos algorithm, which reduces A to a tridiagonal form:

Lanczos-Golub-Kahan Bidiagonalization (for SVD): For computing the SVD, the
Lanczos-Golub-Kahan (LGK) bidiagonalization is useful:

This algorithm computes matrices U  and V  such that U TAV  is bidiagonal, from which the
SVD can be computed efficiently.

If hⱼ₊₁,ⱼ = 0 then break
qⱼ₊₁ = v/hⱼ₊₁,ⱼ

End For

Input: Symmetric matrix A, initial vector q₁ with ‖q₁‖ = 1
Output: Orthonormal basis {q₁, ..., qₘ} and tridiagonal matrix Tₘ

β₀ = 0, q₀ = 0

For j = 1, 2, ..., m

v = Aqⱼ - βⱼ₋₁qⱼ₋₁
αⱼ = qⱼᵀv
v = v - αⱼqⱼ
βⱼ = ‖v‖
If βⱼ = 0 then break
qⱼ₊₁ = v/βⱼ

End For

Input: Matrix A, initial vector x with ‖x‖ = 1
Output: Bidiagonal matrix B and orthonormal bases {u₁, ..., uₘ}, {v₁, ...,
vₙ}

β₀ = 0, u₀ = 0, v₁ = x

For j = 1, 2, ..., min(m, n)

uⱼ = Avⱼ - βⱼ₋₁uⱼ₋₁
αⱼ = ‖uⱼ‖
uⱼ = uⱼ/αⱼ
vⱼ₊₁ = Aᵀuⱼ - αⱼvⱼ
βⱼ = ‖vⱼ₊₁‖
vⱼ₊₁ = vⱼ₊₁/βⱼ

End For



Arnoldi/Lanczos in Practice:

Implementation and Software Libraries

MATLAB/Octave:

Reorthogonalization is often necessary to maintain numerical stability
Implicit restarts can reduce memory requirements for large problems
Preconditioning can improve convergence rates

% Power method

function [lambda, v] = power_method(A, tol, max_iter)

n = size(A, 1);

v = randn(n, 1);

v = v / norm(v);

for iter = 1:max_iter

w = A * v;

lambda = v' * A * v;

w = w / norm(w);

if norm(w - v) < tol

break;

end

v = w;

end

end

% Arnoldi iteration

function [Q, H] = arnoldi(A, q1, m)

n = size(A, 1);

Q = zeros(n, m+1);

H = zeros(m+1, m);

Q(:,1) = q1 / norm(q1);

for j = 1:m

v = A * Q(:,j);

for i = 1:j

H(i,j) = Q(:,i)' * v;

v = v - H(i,j) * Q(:,i);

end

H(j+1,j) = norm(v);

if H(j+1,j) < 1e-12

break;

end

Q(:,j+1) = v / H(j+1,j);



Python (NumPy/SciPy):

Graphs and the Graph Laplacian
Graphs provide a powerful way to model relationships between entities in data. Spectral
graph theory analyzes graphs through the eigendecomposition of their associated matrices.

Basic Graph Concepts
Definition (Graph): A graph G = (V ,E,A) consists of:

Definition (Degree Matrix): The degree matrix D ∈ Rn×n is a diagonal matrix with entries:

Di,i =
n

∑
j=1

Ai,j

representing the sum of weights of all edges connected to vertex vi.

Definition (Graph Types):

Construction of Graphs from Data: Given a dataset of points in Rd, we can construct a
similarity graph by:

end

end

import numpy as np

from scipy.sparse.linalg import eigs, svds

# For eigenvalue problems

eigenvalues, eigenvectors = eigs(A, k=5, which='LM')

# For singular value problems

U, s, Vt = svds(A, k=5)

A set of vertices V = v1, v2, … , vn

A set of edges E ⊂ V × V  connecting pairs of vertices
A symmetric adjacency matrix A ∈ Rn×n with entries Ai,j ≥ 0 representing the weight of
edge (vi, vj)

Undirected Graph: If A is symmetric, i.e., Ai,j = Aj,i

Weighted Graph: If Ai,j can take values other than 0 and 1
Complete Graph: If all vertices are connected, i.e., Ai,j > 0 for all i ≠ j

Regular Graph: If all vertices have the same degree
Bipartite Graph: If vertices can be divided into two disjoint sets such that no edges
connect vertices in the same set



Graph Laplacian and its Properties

Definition (Graph Laplacian): The graph Laplacian matrix L ∈ R
n×n is defined as:

L = D − A

Definition (Normalized Laplacian): The normalized Laplacian LN ∈ Rn×n is defined as:

LN = D−1/2LD−1/2 = I − D−1/2AD−1/2

Definition (Random Walk Laplacian): The random walk Laplacian LRW ∈ R
n×n is defined

as:

LRW = D−1L = I − D−1A

Theorem (Properties of the Graph Laplacian): For the Laplacian matrix L:

Proof Sketch: The positive semidefiniteness follows from:

xTLx =
1

2

n

∑
i,j=1

Ai,j(xi − xj)
2 ≥ 0

The constant vector is an eigenvector with eigenvalue 0 because:

L1 = (D − A)1 = D1 − A1 = d − d = 0

where d is the vector of vertex degrees.

Theorem (Properties of the Normalized Laplacian): For the normalized Laplacian LN :

Example: For the path graph with n vertices, the eigenvalues of the Laplacian are:

λk = 2 − 2 cos(
π(k − 1)

n
), k = 1, 2, … ,n

1. ε-Ball Graph: Connect points within distance ε
2. k-Nearest Neighbor Graph: Connect each point to its k nearest neighbors
3. Fully Connected Graph: Connect all points with weights based on similarity (e.g.,

Gaussian kernel wij = exp(−|xi − xj|2/σ2))

L is symmetric and positive semidefinite
The smallest eigenvalue of L is λ1 = 0 with eigenvector 1 (the constant vector)
The multiplicity of the eigenvalue 0 equals the number of connected components in the
graph
For any vector x ∈ R

n: xTLx = 1
2 ∑n

i,j=1 Ai,j(xi − xj)2

All eigenvalues lie in the interval [0, 2]

The multiplicity of the eigenvalue 0 equals the number of connected components
A bipartite graph is characterized by having an eigenvalue λn = 2



Cheeger Inequality: The second-smallest eigenvalue λ2 of the normalized Laplacian (also
called the algebraic connectivity or Fiedler value) provides bounds on the Cheeger constant
hG, which measures how well-connected the graph is:

h2
G

2
≤ λ2 ≤ 2hG

Graph Construction from Data

When working with high-dimensional data, constructing an appropriate graph is crucial.
Common approaches include:

Implementation (Python):

1. Complete Graph with Gaussian Weights:

Aij = exp (−
|xi − xj|2

2σ2
)

where σ is a scale parameter.
2. k-Nearest Neighbor Graph:

Aij = {

To ensure symmetry, either make an edge if either xi is a neighbor of xj or vice versa
(symmetric kNN), or only if both are neighbors of each other (mutual kNN).

1 if xj is among the k nearest neighbors of xi 0 otherwise

3. ε-Ball Graph:

Aij = {1 if |xi − xj| < ε 0 otherwise

import numpy as np

from sklearn.neighbors import kneighbors_graph

from scipy.spatial.distance import pdist, squareform

def construct_graph(X, method='knn', param=5, weighted=True):

"""

Construct a graph from data points

Parameters:

X: Data points, shape (n_samples, n_features)

method: 'knn', 'epsilon', or 'full'

param: k for knn, epsilon for epsilon-ball

weighted: whether to use Gaussian weights

Returns:

A: Adjacency matrix

D: Degree matrix

L: Laplacian matrix

"""



Graph Fourier Transform
The graph Fourier transform extends the classical Fourier transform to functions defined on
graphs, providing a way to analyze signals in the graph spectral domain.

Definition and Properties
Definition (Graph Fourier Transform): Let G = (V ,E,A) be a graph with Laplacian
L = UΛU T , where U = [u1,u2, … ,un] contains the eigenvectors and
Λ = diag(λ1,λ2, … ,λn) contains the eigenvalues.

For a signal x ∈ Rn defined on the vertices, the graph Fourier transform is:

x̂ = U Tx

The inverse graph Fourier transform is:

x = Ux̂

n_samples = X.shape[0]

if method == 'knn':

# k-nearest neighbors graph

A = kneighbors_graph(X, param, mode='connectivity',

include_self=False).toarray()

# Make symmetric

A = np.maximum(A, A.T)

elif method == 'epsilon':

# Epsilon-ball graph

dist_matrix = squareform(pdist(X))

A = (dist_matrix < param).astype(float)

np.fill_diagonal(A, 0)

elif method == 'full':

# Fully connected graph

dist_matrix = squareform(pdist(X))

A = np.ones((n_samples, n_samples)) - np.eye(n_samples)

if weighted:

sigma = param

A = np.exp(-dist_matrix**2 / (2 * sigma**2))

np.fill_diagonal(A, 0)

# Compute degree matrix

D = np.diag(np.sum(A, axis=1))

# Compute Laplacian

L = D - A

return A, D, L



Interpretation:

Example (Path Graph): For the path graph, the eigenvectors of the Laplacian resemble
discrete cosine functions, making the graph Fourier transform analogous to the discrete
cosine transform.

Analogies with Classical Fourier Transform:

Classical Domain Graph Domain

Frequency Eigenvalue

Sine/Cosine Laplacian eigenvector

Convolution Graph convolution

Low-pass filter Eigenvalue function that attenuates high eigenvalues

Graph Filtering

Graph filtering is performed via pointwise multiplication in the graph Fourier domain:

y = Ug(Λ)U Tx

where g(Λ) = diag(g(λ1), g(λ2), … , g(λn)) is a function applied to the eigenvalues.

Common filter types:

For large graphs, explicitly computing the eigendecomposition becomes infeasible. Instead,
we can approximate filters using polynomial expansions:

g(L) ≈
K

∑
k=0

αkL
k

which requires only matrix-vector multiplications.

The classical Fourier transform decomposes a signal into sine and cosine waves of
different frequencies
The graph Fourier transform decomposes a signal into the eigenvectors of the Laplacian,
which can be interpreted as oscillation modes on the graph
Low eigenvalues correspond to smooth variations across the graph, while high
eigenvalues correspond to rapid oscillations

Low-pass: g(λ) = e−αλ (heat kernel)
Band-pass: g(λ) = e−α(λ−μ)2  (spectral graph wavelet)
High-pass: g(λ) = 1 − e−αλ



Chebyshev Polynomial Approximation: For a filter function g(λ) defined on [0,λmax], we
can use Chebyshev polynomials Tk(x) to approximate g:

g(L) ≈
K

∑
k=0

ckTk(
2L

λmax
− I)

where ck are the Chebyshev coefficients of g.

Implementation (Python):

import numpy as np

from scipy.sparse.linalg import eigsh

def graph_fourier_transform(L, x):

"""

Compute the graph Fourier transform

Parameters:

L: Graph Laplacian

x: Signal on graph vertices

Returns:

x_hat: Fourier coefficients

U: Eigenvectors of L

"""

# Compute eigendecomposition of L

eigenvalues, U = eigsh(L, k=len(x), which='SM')

# Compute Fourier coefficients

x_hat = U.T @ x

return x_hat, U, eigenvalues

def graph_inverse_fourier_transform(U, x_hat):

"""

Compute the inverse graph Fourier transform

Parameters:

U: Eigenvectors of L

x_hat: Fourier coefficients

Returns:

x: Signal on graph vertices

"""

return U @ x_hat

def graph_filter(L, x, filter_func):

"""

Apply a filter to a graph signal



Applications

Signal Denoising: Graph-based denoising applies a low-pass filter to remove high-
frequency noise while preserving the signal structure:

Community Detection: The eigenvectors corresponding to small non-zero eigenvalues can
be used to detect communities in the graph:

Parameters:

L: Graph Laplacian

x: Signal on graph vertices

filter_func: Function that takes eigenvalues and returns filter

coefficients

Returns:

y: Filtered signal

"""

# Compute eigendecomposition of L

eigenvalues, U = eigsh(L, k=len(x), which='SM')

# Compute Fourier coefficients

x_hat = U.T @ x

# Apply filter in frequency domain

y_hat = filter_func(eigenvalues) * x_hat

# Transform back to vertex domain

y = U @ y_hat

return y

# Example filter functions

def low_pass_filter(alpha):

return lambda lambda_: np.exp(-alpha * lambda_)

def high_pass_filter(alpha):

return lambda lambda_: 1 - np.exp(-alpha * lambda_)

def band_pass_filter(alpha, mu):

return lambda lambda_: np.exp(-alpha * (lambda_ - mu)**2)

# Denoise a signal on a graph

noisy_signal = original_signal + noise

denoised_signal = graph_filter(L, noisy_signal, low_pass_filter(alpha=0.1))



Graph Signal Compression: By keeping only the most significant Fourier coefficients,
graph signals can be efficiently compressed:

Dimensionality Reduction with Laplacian Eigenmaps
Laplacian Eigenmaps is a nonlinear dimensionality reduction technique that preserves the
local structure of the data by embedding it in a low-dimensional space using the graph
Laplacian.

Algorithm
Algorithm (Laplacian Eigenmaps):

Mathematical Formulation

Laplacian Eigenmaps finds the embedding coordinates y that minimize:

min
y

n

∑
i,j=1

Ai,j|yi − yj|
2 subject to yTDy = I

This can be reformulated as:

# Get the Fiedler vector (eigenvector corresponding to λ₂)

_, U, _ = graph_fourier_transform(L, np.ones(n))

fiedler_vector = U[:, 1]

communities = fiedler_vector > 0 # Simple thresholding

# Compress a signal by keeping top k Fourier coefficients

x_hat, U, _ = graph_fourier_transform(L, signal)

k = 10 # Number of coefficients to keep

indices = np.argsort(np.abs(x_hat))[-k:]

x_hat_compressed = np.zeros_like(x_hat)

x_hat_compressed[indices] = x_hat[indices]

signal_compressed = graph_inverse_fourier_transform(U, x_hat_compressed)

Input: Data points {x₁, x₂, ..., xₙ} ∈ ℝᵈ, target dimension k
Output: Embedding coordinates {y₁, y₂, ..., yₙ} ∈ ℝᵏ

1. Construct a similarity graph G from the data points

2. Compute the graph Laplacian L = D - A

3. Solve the generalized eigenvalue problem Lf = λDf

4. Use the eigenvectors corresponding to the k smallest non-zero eigenvalues

as the embedding coordinates



min
y

yTLy

yTDy
subject to yTD1 = 0

The solution is given by the eigenvectors of the generalized eigenvalue problem Lf = λDf

corresponding to the smallest non-zero eigenvalues.

One-Dimensional Embedding: For a 1D embedding, the solution is the Fiedler vector
(eigenvector corresponding to λ2). This minimizes:

min
yTD1=0,yTDy=1

yTLy

Why It Works: The objective function penalizes placing connected vertices far apart in the
embedding space, proportional to their edge weights. This preserves the local neighborhood
structure.

Implementation (Python):

import numpy as np

from scipy.sparse.linalg import eigsh

from sklearn.neighbors import kneighbors_graph

def laplacian_eigenmaps(X, n_components=2, n_neighbors=5):

"""

Perform dimensionality reduction using Laplacian Eigenmaps

Parameters:

X: Data points, shape (n_samples, n_features)

n_components: Dimension of the embedding

n_neighbors: Number of neighbors for graph construction

Returns:

Y: Embedding coordinates, shape (n_samples, n_components)

"""

n_samples = X.shape[0]

# Construct the graph

A = kneighbors_graph(X, n_neighbors, mode='connectivity',

include_self=False)

A = 0.5 * (A + A.T) # Make symmetric

A = A.toarray()

# Compute the degree matrix

D = np.diag(np.sum(A, axis=1))

# Compute the Laplacian matrix

L = D - A

# Solve the generalized eigenvalue problem

eigenvalues, eigenvectors = eigsh(L, k=n_components+1, M=D, which='SM')



Comparison with Other Methods

Laplacian Eigenmaps vs. PCA:

Laplacian Eigenmaps vs. t-SNE:

Laplacian Eigenmaps vs. Diffusion Maps:

Example (Swiss Roll): The Swiss roll dataset is a classic example where nonlinear
dimensionality reduction is needed. Laplacian Eigenmaps can successfully "unroll" the data
to reveal its intrinsic 2D structure, while linear methods like PCA fail.

Practical Considerations:

Ranking with Eigenvectors
Vector Iteration

# Sort eigenvalues and eigenvectors

idx = np.argsort(eigenvalues)

eigenvalues = eigenvalues[idx]

eigenvectors = eigenvectors[:, idx]

# Discard the eigenvector corresponding to eigenvalue 0

Y = eigenvectors[:, 1:n_components+1]

return Y

PCA: Linear method that maximizes variance; global structure preservation
Laplacian Eigenmaps: Nonlinear method that preserves local distances; local structure
preservation

t-SNE: Probabilistic method that emphasizes cluster structure; better for visualization
Laplacian Eigenmaps: Spectral method with solid mathematical foundation; faster for
large datasets

Diffusion Maps: Based on diffusion process on the graph; captures multi-scale structures
Laplacian Eigenmaps: Special case of Diffusion Maps with specific time parameter

Choice of graph construction method (kNN, ε-ball, fully connected) affects results
Selection of eigenvectors impacts the quality of the embedding
For large datasets, approximate eigensolvers like Lanczos can be used



Vector iteration (or power method) is a simple iterative technique for finding the dominant
eigenvector of a matrix, with applications in ranking algorithms like PageRank.

Power Method

Algorithm (Power Method):

Theorem (Convergence of Power Method): Let the eigenvalues of a diagonalizable matrix
A ∈ R

n×n be ordered as |λ1| > |λ2| ≥ ⋯ ≥ |λn|. Then the sequence x(k) generated by the
power method converges to the eigenvector corresponding to λ1 at a rate:

sin θ(k) ≤ C( |λ2|

|λ1|
)

k

where θ(k) is the angle between x(k) and the dominant eigenvector, provided the initial vector
has a non-zero component in the direction of the dominant eigenvector.

Proof Sketch: For a diagonalizable matrix A = XΛX−1, we can write:

x(0) =
n

∑
i=1

αivi

where vi are the eigenvectors. Then:

Akx(0) =
n

∑
i=1

αiλ
k
i vi = λk

1 (α1v1 +
n

∑
i=2

αi(
λi

λ1
)

k

vi)

As k increases, the terms with i > 1 become negligible since |λi/λ1| < 1, and the sequence
converges to a multiple of v1.

Example: Consider the matrix A = [ ]. The eigenvalues are λ1 = 3.62 and λ2 = 1.38

. Starting with x(0) = [1, 0]T , the power method converges to the dominant eigenvector
v1 ≈ [0.92, 0.38]T  at a rate determined by |λ2/λ1| ≈ 0.38.

Implementation (Python):

Input: Matrix A, initial vector x⁽⁰⁾ with ‖x⁽⁰⁾‖ = 1
Output: Dominant eigenvector and eigenvalue

For k = 1, 2, ...

y⁽ᵏ⁾ = Ax⁽ᵏ⁻¹⁾
μₖ = ‖y⁽ᵏ⁾‖
x⁽ᵏ⁾ = y⁽ᵏ⁾/μₖ

End For

3 1 1 2

import numpy as np



Inverse Iteration

Inverse iteration is a variant of the power method that can find eigenvectors corresponding to
eigenvalues close to a specified shift.

Algorithm (Inverse Iteration with Shift):

def power_method(A, tol=1e-10, max_iter=1000):

"""

Compute the dominant eigenvector and eigenvalue using the power method

Parameters:

A: Input matrix

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

eigenvalue: Dominant eigenvalue

eigenvector: Corresponding eigenvector

"""

n = A.shape[0]

x = np.random.rand(n)

x = x / np.linalg.norm(x)

for i in range(max_iter):

# Power iteration

y = A @ x

# Compute Rayleigh quotient (eigenvalue estimate)

lambda_est = x.T @ A @ x

# Normalize

y_norm = np.linalg.norm(y)

y = y / y_norm

# Check convergence

if np.linalg.norm(y - x) < tol:

return lambda_est, y

x = y

return lambda_est, x

Input: Matrix A, initial vector x⁽⁰⁾ with ‖x⁽⁰⁾‖ = 1, shift μ
Output: Eigenvector corresponding to eigenvalue closest to μ

For k = 1, 2, ...

Solve (A - μI)y⁽ᵏ⁾ = x⁽ᵏ⁻¹⁾



Theorem: If μ is close to an eigenvalue λi of A, then inverse iteration converges to the
corresponding eigenvector at a rate determined by the ratio of distances to the nearest
eigenvalues:

μ − λj

μ − λi

k

where λj is the second closest eigenvalue to μ.

Implementation (Python):

x⁽ᵏ⁾ = y⁽ᵏ⁾/‖y⁽ᵏ⁾‖
End For ∣ ∣import numpy as np

from scipy.linalg import solve

def inverse_iteration(A, mu, tol=1e-10, max_iter=1000):

"""

Compute the eigenvector corresponding to eigenvalue closest to mu

Parameters:

A: Input matrix

mu: Shift parameter

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

eigenvalue: Estimated eigenvalue

eigenvector: Corresponding eigenvector

"""

n = A.shape[0]

x = np.random.rand(n)

x = x / np.linalg.norm(x)

for i in range(max_iter):

# Inverse iteration

y = solve(A - mu * np.eye(n), x)

# Compute Rayleigh quotient

lambda_est = x.T @ A @ x

# Normalize

y_norm = np.linalg.norm(y)

y = y / y_norm

# Check convergence

if np.linalg.norm(y - x) < tol:

return lambda_est, y



Rayleigh Quotient Iteration

Rayleigh quotient iteration combines the power method with a shifting strategy based on the
Rayleigh quotient.

Algorithm (Rayleigh Quotient Iteration):

Convergence Rate: For symmetric matrices, Rayleigh quotient iteration exhibits cubic
convergence near the solution, making it much faster than the power method or inverse
iteration.

Implementation (Python):

x = y

return lambda_est, x

Input: Matrix A, initial vector x⁽⁰⁾ with ‖x⁽⁰⁾‖ = 1
Output: Eigenvector and eigenvalue

For k = 1, 2, ...

Compute μₖ = (x⁽ᵏ⁻¹⁾)ᵀA(x⁽ᵏ⁻¹⁾)
Solve (A - μₖI)y⁽ᵏ⁾ = x⁽ᵏ⁻¹⁾
x⁽ᵏ⁾ = y⁽ᵏ⁾/‖y⁽ᵏ⁾‖

End For

import numpy as np

from scipy.linalg import solve

def rayleigh_quotient_iteration(A, tol=1e-10, max_iter=100):

"""

Compute an eigenvector and eigenvalue using Rayleigh quotient iteration

Parameters:

A: Input matrix (symmetric)

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

eigenvalue: Estimated eigenvalue

eigenvector: Corresponding eigenvector

"""

n = A.shape[0]

x = np.random.rand(n)

x = x / np.linalg.norm(x)



Perron-Frobenius Theorem
The Perron-Frobenius theorem provides important guarantees about the dominant
eigenvalue and eigenvector of non-negative matrices, which is crucial for ranking algorithms.

Non-negative Matrices
Definition (Non-negative Matrix): A matrix A is non-negative if all its entries are non-
negative: Aij ≥ 0 for all i, j.

Definition (Positive Matrix): A matrix A is positive if all its entries are positive: Aij > 0 for all
i, j.

Definition (Irreducible Matrix): A non-negative matrix A is irreducible if for any i, j, there
exists a positive integer k such that (Ak)ij > 0. Equivalently, the directed graph associated
with A is strongly connected.

Perron-Frobenius Theorems

Theorem (Perron-Frobenius, Version 1): If A ∈ R
n×n is non-negative, then:

for i in range(max_iter):

# Compute Rayleigh quotient

mu = x.T @ A @ x

# Inverse iteration with current shift

try:

y = solve(A - mu * np.eye(n), x)

except np.linalg.LinAlgError:

# If (A - μI) is singular, perturb μ slightly

mu += 1e-10

y = solve(A - mu * np.eye(n), x)

# Normalize

y_norm = np.linalg.norm(y)

y = y / y_norm

# Check convergence

if np.linalg.norm(y - x) < tol:

return mu, y

x = y

return mu, x

The spectral radius ρ(A) is an eigenvalue of A
There exists a non-negative eigenvector x such that Ax = ρ(A)x



Theorem (Perron-Frobenius, Version 2): If A ∈ R
n×n is non-negative and irreducible, then:

Theorem (Perron): If A ∈ R
n×n is positive, then:

Consequences for the Power Method:

Example (Stochastic Matrix): For a stochastic matrix S (non-negative with column sums
equal to 1), ρ(S) = 1. If S is irreducible, then there exists a unique positive vector π such that
Sπ = π and ∑i πi = 1. This vector π is the stationary distribution of the Markov chain
represented by S.

Example (Circulant Matrix): Consider the circulant matrix A = [ ].
This matrix is irreducible but has three eigenvalues of magnitude 1: λ1 = 1, λ2 = e2πi/3,
λ3 = e4πi/3. The power method applied to this matrix will not converge.

PageRank
PageRank is an algorithm developed by Larry Page and Sergey Brin that assigns
importance scores to web pages based on the link structure of the web.

The PageRank Model
The PageRank model is based on a random surfer who follows links on web pages with
probability μ and randomly jumps to any page with probability 1 − μ.

Let xi be the importance of page i. The basic model equation is:

xi = ∑
j:Aj,i=1

xj

Dj,j

The spectral radius ρ(A) is an eigenvalue of A
ρ(A) > 0

There exists a positive eigenvector x such that Ax = ρ(A)x

ρ(A) is a simple eigenvalue

The spectral radius ρ(A) is an eigenvalue of A
ρ(A) > 0

There exists a positive eigenvector x such that Ax = ρ(A)x

ρ(A) is a simple eigenvalue and is larger in magnitude than all other eigenvalues

For a positive matrix, the power method always converges to the unique positive
eigenvector corresponding to ρ(A)

For a non-negative irreducible matrix, the power method converges to the positive
eigenvector if ρ(A) is the only eigenvalue with magnitude ρ(A)

If there are multiple eigenvalues with magnitude ρ(A), the power method may not
converge

0 1 0 0 0 1 1 0 0



where A is the adjacency matrix of the web graph and D is the diagonal matrix of out-
degrees.

In matrix form:

x = Sx

where S = ATD−1 is the stochastic transition matrix.

Problems with the Basic Model:

To handle these issues, the model is modified to:

x =
1 − μ

n
1 + μSx = Gx

where G = (1 − μ) 1
n

11T + μS is the Google matrix and μ ≈ 0.85 is a damping factor.

Theorem: The Google matrix G has the following properties:

Proof Sketch: Since G is positive, by the Perron theorem, it has a unique dominant
eigenvalue λ1 = 1 with a positive eigenvector. For any eigenvalue λ ≠ 1 of G, we can show
that |λ| ≤ μ.

Algorithm (PageRank Computation):

Pages with no incoming links get zero importance
Pages with no outgoing links act as "sinks"
The graph may not be strongly connected, leading to multiple eigenvectors with
eigenvalue 1

G is stochastic and positive
The largest eigenvalue of G is 1, and all other eigenvalues have magnitude at most μ
The power method applied to G converges to the PageRank vector at a rate of
approximately μk

Input: Adjacency matrix A, damping factor μ

Output: PageRank vector x

Initialize x⁽⁰⁾ = (1/n)1
Compute D = diag(sum(A, 2))  # Out-degree matrix

Compute S = A^T D^(-1)  # Transition matrix

For k = 1, 2, ...

x⁽ᵏ⁾ = ((1-μ)/n)1 + μS x⁽ᵏ⁻¹⁾
If ‖x⁽ᵏ⁾ - x⁽ᵏ⁻¹⁾‖ < tol



Implementation (Python):

Return x⁽ᵏ⁾
End For

def pagerank(A, mu=0.85, tol=1e-10, max_iter=100):

"""

Compute the PageRank vector for a web graph

Parameters:

A: Adjacency matrix (A[i,j] = 1 if there is a link from j to i)

mu: Damping factor

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

x: PageRank vector

"""

n = A.shape[0]

# Initialize PageRank vector

x = np.ones(n) / n

# Compute out-degree matrix

out_degrees = np.sum(A, axis=0)

# Handle dangling nodes (pages with no outlinks)

dangling = np.where(out_degrees == 0)[0]

if len(dangling) > 0:

for j in dangling:

A[:, j] = 1/n  # Uniform transition from dangling nodes

out_degrees = np.sum(A, axis=0)

# Normalize adjacency matrix by out-degrees to get transition matrix

S = A / out_degrees

# Power iteration

for _ in range(max_iter):

x_new = (1-mu)/n * np.ones(n) + mu * S @ x

# Check convergence

if np.linalg.norm(x_new - x, 1) < tol:

return x_new

x = x_new

return x



Personalized PageRank

A generalization of PageRank allows for personalization by replacing the uniform
teleportation distribution with a custom vector:

x = (1 − μ)v + μSx

where v is a personalization vector. This allows emphasizing certain types of pages based
on user preferences or query context.

Implementation (Python):

def personalized_pagerank(A, v, mu=0.85, tol=1e-10, max_iter=100):

"""

Compute the Personalized PageRank vector

Parameters:

A: Adjacency matrix

v: Personalization vector (must sum to 1)

mu: Damping factor

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

x: Personalized PageRank vector

"""

n = A.shape[0]

# Initialize PageRank vector

x = np.ones(n) / n

# Compute out-degree matrix

out_degrees = np.sum(A, axis=0)

# Handle dangling nodes

dangling = np.where(out_degrees == 0)[0]

if len(dangling) > 0:

for j in dangling:

A[:, j] = v  # Personalized transition from dangling nodes

out_degrees = np.sum(A, axis=0)

# Normalize adjacency matrix

S = A / out_degrees

# Power iteration

for _ in range(max_iter):

x_new = (1-mu) * v + mu * S @ x

# Check convergence



Applications and Extensions

HITS Algorithm (Hyperlink-Induced Topic Search): An alternative to PageRank that
computes both hub scores (nodes that point to many authorities) and authority scores
(nodes that are pointed to by many hubs):

if np.linalg.norm(x_new - x, 1) < tol:

return x_new

x = x_new

return x

def hits(A, max_iter=100, tol=1e-10):

"""

Compute HITS hub and authority scores

Parameters:

A: Adjacency matrix

max_iter: Maximum number of iterations

tol: Convergence tolerance

Returns:

hub: Hub scores

authority: Authority scores

"""

n = A.shape[0]

# Initialize hub and authority scores

hub = np.ones(n) / np.sqrt(n)

authority = np.ones(n) / np.sqrt(n)

for _ in range(max_iter):

# Update authority scores

authority_new = A.T @ hub

norm_auth = np.linalg.norm(authority_new)

if norm_auth > 0:

authority_new = authority_new / norm_auth

# Update hub scores

hub_new = A @ authority_new

norm_hub = np.linalg.norm(hub_new)

if norm_hub > 0:

hub_new = hub_new / norm_hub

# Check convergence

if (np.linalg.norm(authority_new - authority) < tol and

np.linalg.norm(hub_new - hub) < tol):



Trust Rank: A variant of PageRank that combats web spam by biasing the random jump to a
set of trusted pages.

SimRank: A measure of similarity between vertices based on the structural context,
computed as:

s(a, b) =
C

|I(a)||I(b)|
∑
i∈I(a)

∑
j∈I(b)

s(i, j)

where I(a) is the set of in-neighbors of vertex a and C is a decay factor.

Numerical Methods for Large Scale Linear
Systems
Krylov Methods for Eigenvalue Problems
Krylov subspace methods are iterative techniques for solving large-scale eigenproblems,
based on projections onto Krylov subspaces.

Krylov Subspaces
Definition (Krylov Subspace): For a matrix A ∈ Rn×n and a vector x ∈ Rn, the m-th Krylov
subspace is:

Km(A,x) = spanx,Ax,A2x, … ,Am−1x

Properties:

Theorem: If A is an n × n matrix and p is the degree of the minimal polynomial of A with
respect to x, then dim(Km(A,x)) = min(m, p) and Kp(A,x) = Kp+1(A,x) = … = Kn(A,x).

Arnoldi Method

return hub_new, authority_new

hub = hub_new

authority = authority_new

return hub, authority

dim(Km(A,x)) ≤ m

Km(A,x) ⊆ Km+1(A,x)

AKm(A,x) ⊆ Km+1(A,x)

Km(αA + βI,x) = Km(A,x) for α ≠ 0



The Arnoldi method builds an orthonormal basis for the Krylov subspace and reduces A to
upper Hessenberg form:

Algorithm (Arnoldi):

The Arnoldi relation can be written as:

AQm = QmHm + hm+1,mqm+1e
T
m

where Qm = [q1, … , qm] and Hm is the m × m upper Hessenberg matrix with elements hij.

Implicit Restarting: To manage storage and computational requirements, implicit restarting
selectively keeps information about desired eigenvalues while discarding the rest:

Implementation (Python):

Input: Matrix A, initial vector q₁ with ‖q₁‖ = 1, dimension m
Output: Orthonormal basis {q₁, ..., qₘ} for Kₘ(A, q₁) and upper Hessenberg
matrix Hₘ

For j = 1, 2, ..., m

v = Aqⱼ
For i = 1, 2, ..., j

hᵢⱼ = qᵢᵀv
v = v - hᵢⱼqᵢ

End For

hⱼ₊₁,ⱼ = ‖v‖
If hⱼ₊₁,ⱼ = 0 then break
qⱼ₊₁ = v/hⱼ₊₁,ⱼ

End For

1. Run m steps of Arnoldi to get AQₘ = QₘHₘ + h_{m+1,m}q_{m+1}e_m^T
2. Compute eigenvalues of Hₘ and identify k wanted and (m-k) unwanted
eigenvalues

3. Apply (m-k) shifted QR steps on Hₘ with shifts equal to unwanted
eigenvalues

4. Truncate to k-step Arnoldi decomposition

5. Expand back to m steps

import numpy as np

from scipy.linalg import hessenberg

def arnoldi(A, q1, m):

"""

Arnoldi iteration for computing an orthonormal basis of the Krylov



Lanczos Method for Symmetric Matrices

For symmetric matrices, the Arnoldi method simplifies to the Lanczos algorithm, generating a
tridiagonal matrix:

Algorithm (Lanczos):

subspace

Parameters:

A: Input matrix

q1: Starting vector (will be normalized)

m: Maximum dimension of Krylov subspace

Returns:

Q: Orthonormal basis for Krylov subspace

H: Upper Hessenberg matrix

"""

n = A.shape[0]

Q = np.zeros((n, m+1))

H = np.zeros((m+1, m))

# Normalize the initial vector

Q[:, 0] = q1 / np.linalg.norm(q1)

for j in range(m):

# Compute v = A*q_j

v = A @ Q[:, j]

# Orthogonalize against previous vectors

for i in range(j+1):

H[i, j] = Q[:, i].T @ v

v = v - H[i, j] * Q[:, i]

# Get next vector

H[j+1, j] = np.linalg.norm(v)

# Check for invariant subspace

if abs(H[j+1, j]) < 1e-12:

return Q[:, :j+1], H[:j+1, :j+1]

Q[:, j+1] = v / H[j+1, j]

return Q[:, :m], H[:m, :m]

Input: Symmetric matrix A, initial vector q₁ with ‖q₁‖ = 1, dimension m
Output: Orthonormal basis {q₁, ..., qₘ} for Kₘ(A, q₁) and tridiagonal matrix
Tₘ



The tridiagonal matrix Tm has diagonal elements αj and subdiagonal elements βj.

Numerical Issues: In practice, the computed Lanczos vectors lose orthogonality due to
round-off errors. This can be addressed by reorthogonalization:

β₀ = 0, q₀ = 0

For j = 1, 2, ..., m

v = Aqⱼ - βⱼ₋₁qⱼ₋₁
αⱼ = qⱼᵀv
v = v - αⱼqⱼ
βⱼ = ‖v‖
If βⱼ = 0 then break
qⱼ₊₁ = v/βⱼ

End For

def lanczos_with_reorthogonalization(A, q1, m):

"""

Lanczos algorithm with full reorthogonalization

Parameters:

A: Symmetric matrix

q1: Starting vector

m: Maximum dimension of Krylov subspace

Returns:

Q: Orthonormal basis for Krylov subspace

T: Tridiagonal matrix

"""

n = A.shape[0]

Q = np.zeros((n, m+1))

T = np.zeros((m+1, m+1))

# Normalize the initial vector

Q[:, 0] = q1 / np.linalg.norm(q1)

beta = 0

q_prev = np.zeros(n)

for j in range(m):

# Compute v = A*q_j - beta*q_{j-1}

v = A @ Q[:, j] - beta * q_prev

# Full reorthogonalization

for i in range(j+1):

coef = Q[:, i].T @ v

v = v - coef * Q[:, i]



Eigenvalue Approximation and Convergence

The eigenvalues of the Hessenberg matrix Hm (or tridiagonal matrix Tm for symmetric A) are
called Ritz values and approximate some eigenvalues of A.

Theorem (Convergence of Ritz Values): The Ritz values tend to approximate the extreme
eigenvalues of A first. For symmetric matrices, the convergence rate depends on the
separation of eigenvalues.

Theorem (Kaniel-Paige-Saad): For a symmetric matrix A with eigenvalues
λ1 > λ2 > ⋯ > λn and corresponding orthonormal eigenvectors u1,u2, … ,un, the error in
the largest Ritz value θ(m)

1  after m steps of the Lanczos method satisfies:

0 ≤ λ1 − θ
(m)
1 ≤ (λ1 − λ2) tan2(∠(q1,u1)) ⋅

1

T 2
m−1( λ1−λ2

λ2−λn
)

,

where Tm−1 is the Chebyshev polynomial of degree m − 1.

Practical Considerations
Choosing the Starting Vector: The choice of starting vector q1 affects convergence. A
random vector typically works well as it will have components in all eigendirections with high
probability.

if i == j:

T[i, i] = coef  # Diagonal element

# Reorthogonalize again for numerical stability

for i in range(j+1):

coef = Q[:, i].T @ v

v = v - coef * Q[:, i]

beta = np.linalg.norm(v)

# Check for invariant subspace

if beta < 1e-12:

return Q[:, :j+1], T[:j+1, :j+1]

if j < m:

Q[:, j+1] = v / beta

T[j, j+1] = beta  # Subdiagonal element

T[j+1, j] = beta  # Superdiagonal element

q_prev = Q[:, j]

return Q[:, :m], T[:m, :m]



Stopping Criteria: A common criterion is the residual norm |Ax − λx|2 < tol for approximate
eigenpairs (λ,x).

Implicit Restarting: The ARPACK library implements an implicitly restarted Arnoldi method,
which SciPy's eigsh  and eigs  functions use.

Krylov Methods for Large Systems of Equations
Krylov subspace methods provide efficient iterative solvers for large linear systems Ax = b,
especially when A is sparse.

Conjugate Gradient Method
For symmetric positive definite matrices, the Conjugate Gradient (CG) method minimizes the
quadratic function f(x) = 1

2
xTAx − xT b over successive Krylov subspaces.

Algorithm (Conjugate Gradient):

Theorem (Convergence of CG): If A is SPD with eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ λn > 0, then
the error in the CG method satisfies:

|x_k - x__|_A \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k |x_0 - x__|_A,

where |v|A = √vTAv is the A-norm, x∗ is the exact solution, and κ = λ1/λn is the condition
number of A.

Implementation (Python):

Input: SPD matrix A, right-hand side b, initial guess x₀

Output: Approximate solution x

r₀ = b - Ax₀

p₀ = r₀

For k = 0, 1, ...

αₖ = (rₖᵀrₖ)/(pₖᵀApₖ)
xₖ₊₁ = xₖ + αₖpₖ
rₖ₊₁ = rₖ - αₖApₖ
If ‖rₖ₊₁‖ < tol then break
βₖ = (rₖ₊₁ᵀrₖ₊₁)/(rₖᵀrₖ)
pₖ₊₁ = rₖ₊₁ + βₖpₖ

End For

import numpy as np

def conjugate_gradient(A, b, x0=None, tol=1e-10, max_iter=None):

"""



Generalized Minimal Residual Method (GMRES)

For general (non-symmetric) matrices, GMRES minimizes the residual norm |b − Ax|2 over
successive Krylov subspaces.

Algorithm (GMRES):

Conjugate Gradient method for solving Ax = b

Parameters:

A: Symmetric positive definite matrix

b: Right-hand side vector

x0: Initial guess (default: zero vector)

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

x: Approximate solution

"""

n = len(b)

if x0 is None:

x = np.zeros(n)

else:

x = x0.copy()

if max_iter is None:

max_iter = n

r = b - A @ x

p = r.copy()

rsold = r.T @ r

for i in range(max_iter):

Ap = A @ p

alpha = rsold / (p.T @ Ap)

x = x + alpha * p

r = r - alpha * Ap

# Check convergence

rsnew = r.T @ r

if np.sqrt(rsnew) < tol:

break

p = r + (rsnew / rsold) * p

rsold = rsnew

return x



The least-squares problem miny |βe1 − H̄jy|2 is typically solved using Givens rotations to
transform H̄j into upper triangular form.

Restarted GMRES: Since GMRES requires storing all basis vectors, a restarted version
GMRES(m) is often used, which restarts after m iterations:

Input: Matrix A, right-hand side b, initial guess x₀

Output: Approximate solution x

r₀ = b - Ax₀

β = ‖r₀‖₂
q₁ = r₀/β

For j = 1, 2, ..., until convergence

Compute w = Aqⱼ
For i = 1, 2, ..., j

hᵢⱼ = qᵢᵀw
w = w - hᵢⱼqᵢ

End For

hⱼ₊₁,ⱼ = ‖w‖₂
If hⱼ₊₁,ⱼ ≈ 0 then break
qⱼ₊₁ = w/hⱼ₊₁,ⱼ

# Minimize ‖βe₁ - H� ᵏy‖₂ to find yᵏ
# Update xₖ = x₀ + Qₖyᵏ

End For

def gmres_restarted(A, b, x0=None, m=20, tol=1e-10, max_restarts=100):

"""

Restarted GMRES method for solving Ax = b

Parameters:

A: Square matrix

b: Right-hand side vector

x0: Initial guess (default: zero vector)

m: Maximum subspace dimension before restart

tol: Convergence tolerance

max_restarts: Maximum number of restarts

Returns:

x: Approximate solution

"""

n = len(b)

if x0 is None:

x = np.zeros(n)

else:



Biconjugate Gradient Stabilized (BiCGSTAB)

x = x0.copy()

for restart in range(max_restarts):

r = b - A @ x

beta = np.linalg.norm(r)

if beta < tol:

break

# Initialize Krylov subspace

Q = np.zeros((n, m+1))

H = np.zeros((m+1, m))

Q[:, 0] = r / beta

# Build Krylov subspace

for j in range(m):

# Arnoldi process

w = A @ Q[:, j]

for i in range(j+1):

H[i, j] = Q[:, i].T @ w

w = w - H[i, j] * Q[:, i]

H[j+1, j] = np.linalg.norm(w)

if abs(H[j+1, j]) < 1e-14:

# Lucky breakdown

m = j+1

break

Q[:, j+1] = w / H[j+1, j]

# Apply Givens rotations to H

# ... (implementation details omitted)

# Check convergence

if residual < tol:

break

# Solve least squares problem and update x

y = np.linalg.lstsq(H[:m, :m], beta * np.eye(m+1, 1)[:m],

rcond=None)[0]

x = x + Q[:, :m] @ y

return x



BiCGSTAB is another Krylov subspace method for non-symmetric systems that avoids some
of the issues with the original BiCG method:

def bicgstab(A, b, x0=None, tol=1e-10, max_iter=None):

"""

BiCGSTAB method for solving Ax = b

Parameters:

A: Square matrix

b: Right-hand side vector

x0: Initial guess

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

x: Approximate solution

"""

n = len(b)

if x0 is None:

x = np.zeros(n)

else:

x = x0.copy()

if max_iter is None:

max_iter = n

r = b - A @ x

r0_hat = r.copy() # Shadow residual

rho_prev = 1

alpha = 1

omega = 1

v = np.zeros(n)

p = np.zeros(n)

for i in range(max_iter):

rho = r0_hat.T @ r

# Check for breakdown

if abs(rho) < 1e-14:

break

beta = (rho / rho_prev) * (alpha / omega)

p = r + beta * (p - omega * v)

v = A @ p

alpha = rho / (r0_hat.T @ v)

s = r - alpha * v



Preconditioning

Preconditioning is crucial for accelerating the convergence of Krylov methods. Instead of
solving Ax = b, we solve the equivalent system M −1Ax = M −1b where M is a
preconditioner that approximates A but is easier to invert.

Common Preconditioners:

Example (Preconditioned CG):

t = A @ s

omega = (t.T @ s) / (t.T @ t)

x = x + alpha * p + omega * s

r = s - omega * t

# Check convergence

if np.linalg.norm(r) < tol:

break

rho_prev = rho

return x

Jacobi: M = diag(A)

Symmetric Gauss-Seidel: M = (D + L)D−1(D + L)T  where A = D + L + LT

Incomplete LU (ILU): M =
~
L

~
U  where ~

L and ~
U  are sparse approximations to the LU

factors
Algebraic Multigrid (AMG): Hierarchical preconditioner based on coarse-grid
corrections

def preconditioned_cg(A, b, M_inv, x0=None, tol=1e-10, max_iter=None):

"""

Preconditioned Conjugate Gradient method

Parameters:

A: Symmetric positive definite matrix

b: Right-hand side vector

M_inv: Function that computes M^{-1}v

x0: Initial guess

tol: Convergence tolerance

max_iter: Maximum number of iterations

Returns:

x: Approximate solution

"""

n = len(b)



Krylov Methods for Matrix Functions
Krylov subspace methods can also be used to compute matrix functions f(A)v without
explicitly forming f(A).

Functions of Matrices
Definition (Matrix Function): For a function f with sufficient regularity, f(A) is defined via
the Jordan canonical form or by a contour integral:

f(A) =
1

2πi
∮
C

f(z)(zI − A)−1dz

where C is a contour enclosing the spectrum of A.

Example (Matrix Exponential): The matrix exponential eA is especially important in solving
systems of ODEs.

if x0 is None:

x = np.zeros(n)

else:

x = x0.copy()

if max_iter is None:

max_iter = n

r = b - A @ x

z = M_inv(r)

p = z.copy()

rz_old = r.T @ z

for i in range(max_iter):

Ap = A @ p

alpha = rz_old / (p.T @ Ap)

x = x + alpha * p

r = r - alpha * Ap

# Check convergence

if np.linalg.norm(r) < tol:

break

z = M_inv(r)

rz_new = r.T @ z

beta = rz_new / rz_old

p = z + beta * p

rz_old = rz_new

return x



Krylov Approximation

The idea is to project the problem onto a smaller Krylov subspace:

f(A)v ≈ |v|2Qmf(Hm)e1

where Qm and Hm are from the Arnoldi (or Lanczos) process.

Algorithm (Arnoldi Method for f(A)v):

Implementation (Python):

Input: Matrix A, vector v, function f

Output: Approximation to f(A)v

β = ‖v‖₂
q₁ = v/β

Apply m steps of Arnoldi to get Qₘ and Hₘ
Compute f(Hₘ) (small problem)
Return βQₘf(Hₘ)e₁

import numpy as np

from scipy.linalg import expm

def krylov_matrix_function(A, v, f, m=30):

"""

Compute f(A)v using Krylov subspace approximation

Parameters:

A: Square matrix

v: Vector

f: Matrix function (e.g., expm for matrix exponential)

m: Dimension of Krylov subspace

Returns:

w: Approximation to f(A)v

"""

n = len(v)

beta = np.linalg.norm(v)

q = v / beta

# Initialize Krylov subspace

Q = np.zeros((n, m+1))

H = np.zeros((m+1, m))

Q[:, 0] = q

# Arnoldi process

for j in range(m):



w = A @ Q[:, j]

for i in range(j+1):

H[i, j] = Q[:, i].T @ w

w = w - H[i, j] * Q[:, i]

H[j+1, j] = np.linalg.norm(w)

def krylov_matrix_function(A, v, f, m=30):

"""

Compute f(A)v using Krylov subspace approximation

Parameters:

A: Square matrix

v: Vector

f: Matrix function (e.g., expm for matrix exponential)

m: Dimension of Krylov subspace

Returns:

w: Approximation to f(A)v

"""

n = len(v)

beta = np.linalg.norm(v)

q = v / beta

# Initialize Krylov subspace

Q = np.zeros((n, m+1))

H = np.zeros((m+1, m))

Q[:, 0] = q

# Arnoldi process

for j in range(m):

w = A @ Q[:, j]

for i in range(j+1):

H[i, j] = Q[:, i].T @ w

w = w - H[i, j] * Q[:, i]

H[j+1, j] = np.linalg.norm(w)

# Check for invariant subspace

if abs(H[j+1, j]) < 1e-14:

# Reduce dimension

H_reduced = H[:j+1, :j+1]

Q_reduced = Q[:, :j+1]

# Compute f(H) (small matrix)

f_H = f(H_reduced)

# Project back to full space



return beta * Q_reduced @ f_H[:, 0]

Q[:, j+1] = w / H[j+1, j]

# Compute f(H) (small matrix)

H_reduced = H[:m, :m]

f_H = f(H_reduced)

# Project back to full space

return beta * Q[:, :m] @ f_H[:, 0]


